P P SAVANI UNIVERSITY

Second Semester of B.Sc. (IT) Examination May 2022

SESH1061 Discrete Mathematics for Computer Applications

Time: 10:00 a.m. To 12:30 p.m.

30.05.2022, Monday

1. The question paper comprises of two sections.

2. Section I and II must be attempted in same answer sheet.

Instructions:

Make su	rand it must be attempted in same answer sneet. uitable assumptions and draw neat figures wherever required. cientific calculator is allowed.	
	SECTION - I	
Q-1	Define the following terms:	[05]
(i)	Adjoint Matrix	[]
(ii)	Complete Lattice	
(iii)	Modular Lattice	
(iv)	Groupoid	
(v)	Group	
. ,	From Q - 2 to Q - 8 attempt any Five:	
Q-2	State whether the given following system is homogenous or not. Also, how many solutions exist for the following system?	[05]
	4x - 3y - 2z = 0	
	5x - 9y + 23z = 0	
	3x + 2y + 7z = 0	
Q-3	If $A = \begin{bmatrix} -1 & -1 \\ 2 & -2 \end{bmatrix}$ verify that $A^2 + 3A + 4I = 0$ and find A^{-1} .	[05]
Q-4	Let $A = \begin{bmatrix} 3 & -1 & 0 \\ 1 & 2 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -1 & 1 \\ -2 & 0 & 6 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & 1 \end{bmatrix}$ compute $-A$ and $A + B - C$.	[05]
Q-5	If (L, \land, \lor) is complemented Lattice then state and prove De Morgan's Law.	[05]
Q-6	Consider the following Lattice	[05]
	(a) Which of the following are sublattices of L ? $L_1 = \{0, a_1, a_2, 1\}$ $L_2 = \{0, a_1, a_5, 1\}$ $L_3 = \{a_1, a_3, a_4, 1\}$	
	a_1 a_2 (b) Find complements if exist for elements a_1 , a_2 and a_3 .	
	(c) Is L distributive?	
	(d) Is L a complemented Lattice?	
Q-7	(a) Show that the following permutation is product of disjoint cycle $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 2 & 1 & 4 & 5 \end{pmatrix}$.	[05]
	(b) If $f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$ and $g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$, then find gfg^{-1} .	
Q-8	Find all the generators of the cyclic group $G = \{1,2,3,4,\times_5\}$.	[05]

Maximum Marks: 60

SECTION - II

Q - 1 Define the following terms:

[05]

- (i) Tree and Rooted Tree
- (ii) Minimal Spanning Tree
- (iii) Hamiltonian Graph (Hamiltonian Path and Circuit)
- (iv) In-degree, Out-degree and Total degree of a vertex
- (v) Cycle and Wheel

From Q - 2 to Q - 8 attempt any Five:

Q - 2 Determine the order in which a preorder traversal visits the vertices of the given ordered [05]

Q - 3 Use BFS algorithm to find a spanning tree of the graph given below

[05]

Q-4 Find the length of a shortest path between a and z in the given weighted graph.

[05]

Q-5 Find the number of vertices, number of edges and identify all isolated & pendant vertices in each case:

[05]

Q-6 Does each of these lists of vertices form a path in the following graph? Which paths are [05] simple? Which are circuits? What are the lengths of those that are paths?

- (a) a, e, b, c, b
- **(b)** a, e, a, d, b, c, a
- Q 7 Determine whether the given graph is connected:

(b)

Q-8 Determine whether the given graph has a Hamiltonian circuit. If it does, find such a circuit. [05] If it does not, give an argument to show why no such circuit exists.

(b)

[05]